Refine3DNet: Scaling Precision in 3D Object Reconstruction from Multi-View RGB Images using Attention

Generating 3D models from multi-view 2D RGB images has gained significant attention, extending the capabilities of technologies like Virtual Reality, Robotic Vision, and human-machine interaction. In this paper, we introduce a hybrid strategy combining CNNs and transformers, featuring a visual auto-encoder with self-attention mechanisms and a 3D refiner network, trained using a novel Joint Train Separate Optimization (JTSO) algorithm. Encoded features from unordered inputs are transformed into an enhanced feature map by the self-attention layer, decoded into an initial 3D volume, and further refined. Our network generates 3D voxels from single or multiple 2D images from arbitrary viewpoints. Performance evaluations using the ShapeNet datasets show that our approach, combined with JTSO, outperforms state-of-the-art techniques in single and multi-view 3D reconstruction, achieving the highest mean intersection over union (IOU) scores, surpassing other models by 4.2% in single-view reconstruction.
View on arXiv