ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2412.00979
71
0

Hierarchical Prompt Decision Transformer: Improving Few-Shot Policy Generalization with Global and Adaptive Guidance

1 December 2024
Zhe Wang
Haozhu Wang
Yanjun Qi
    OffRL
ArXivPDFHTML
Abstract

Decision transformers recast reinforcement learning as a conditional sequence generation problem, offering a simple but effective alternative to traditional value or policy-based methods. A recent key development in this area is the integration of prompting in decision transformers to facilitate few-shot policy generalization. However, current methods mainly use static prompt segments to guide rollouts, limiting their ability to provide context-specific guidance. Addressing this, we introduce a hierarchical prompting approach enabled by retrieval augmentation. Our method learns two layers of soft tokens as guiding prompts: (1) global tokens encapsulating task-level information about trajectories, and (2) adaptive tokens that deliver focused, timestep-specific instructions. The adaptive tokens are dynamically retrieved from a curated set of demonstration segments, ensuring context-aware guidance. Experiments across seven benchmark tasks in the MuJoCo and MetaWorld environments demonstrate the proposed approach consistently outperforms all baseline methods, suggesting that hierarchical prompting for decision transformers is an effective strategy to enable few-shot policy generalization.

View on arXiv
Comments on this paper