ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2412.04918
62
1

On one dimensional weighted Poincare inequalities for Global Sensitivity Analysis

6 December 2024
David Heredia
Aldéric Joulin
Olivier Roustant
ArXivPDFHTML
Abstract

One-dimensional Poincare inequalities are used in Global Sensitivity Analysis (GSA) to provide derivative-based upper bounds and approximations of Sobol indices. We add new perspectives by investigating weighted Poincare inequalities. Our contributions are twofold. In a first part, we provide new theoretical results for weighted Poincare inequalities, guided by GSA needs. We revisit the construction of weights from monotonic functions, providing a new proof from a spectral point of view. In this approach, given a monotonic function g, the weight is built such that g is the first non-trivial eigenfunction of a convenient diffusion operator. This allows us to reconsider the linear standard, i.e. the weight associated to a linear g. In particular, we construct weights that guarantee the existence of an orthonormal basis of eigenfunctions, leading to approximation of Sobol indices with Parseval formulas. In a second part, we develop specific methods for GSA. We study the equality case of the upper bound of a total Sobol index, and link the sharpness of the inequality to the proximity of the main effect to the eigenfunction. This leads us to theoretically investigate the construction of data-driven weights from estimators of the main effects when they are monotonic, another extension of the linear standard. Finally, we illustrate the benefits of using weights on a GSA study of two toy models and a real flooding application, involving the Poincare constant and/or the whole eigenbasis.

View on arXiv
Comments on this paper