ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2412.05292
109
2

TagFog: Textual Anchor Guidance and Fake Outlier Generation for Visual Out-of-Distribution Detection

22 November 2024
Jiankang Chen
Tong Zhang
Wei-Shi Zheng
Ruixuan Wang
    OODD
ArXivPDFHTML
Abstract

Out-of-distribution (OOD) detection is crucial in many real-world applications. However, intelligent models are often trained solely on in-distribution (ID) data, leading to overconfidence when misclassifying OOD data as ID classes. In this study, we propose a new learning framework which leverage simple Jigsaw-based fake OOD data and rich semantic embeddings (`anchors') from the ChatGPT description of ID knowledge to help guide the training of the image encoder. The learning framework can be flexibly combined with existing post-hoc approaches to OOD detection, and extensive empirical evaluations on multiple OOD detection benchmarks demonstrate that rich textual representation of ID knowledge and fake OOD knowledge can well help train a visual encoder for OOD detection. With the learning framework, new state-of-the-art performance was achieved on all the benchmarks. The code is available at \url{https://github.com/Cverchen/TagFog}.

View on arXiv
Comments on this paper