ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2412.05628
86
0

Remix-DiT: Mixing Diffusion Transformers for Multi-Expert Denoising

7 December 2024
Gongfan Fang
Xinyin Ma
Xinchao Wang
    DiffM
    MoE
ArXivPDFHTML
Abstract

Transformer-based diffusion models have achieved significant advancements across a variety of generative tasks. However, producing high-quality outputs typically necessitates large transformer models, which result in substantial training and inference overhead. In this work, we investigate an alternative approach involving multiple experts for denoising, and introduce Remix-DiT, a novel method designed to enhance output quality at a low cost. The goal of Remix-DiT is to craft N diffusion experts for different denoising timesteps, yet without the need for expensive training of N independent models. To achieve this, Remix-DiT employs K basis models (where K < N) and utilizes learnable mixing coefficients to adaptively craft expert models. This design offers two significant advantages: first, although the total model size is increased, the model produced by the mixing operation shares the same architecture as a plain model, making the overall model as efficient as a standard diffusion transformer. Second, the learnable mixing adaptively allocates model capacity across timesteps, thereby effectively improving generation quality. Experiments conducted on the ImageNet dataset demonstrate that Remix-DiT achieves promising results compared to standard diffusion transformers and other multiple-expert methods. The code is available at https://github.com/VainF/Remix-DiT.

View on arXiv
Comments on this paper