ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2412.07079
64
28

Light Field Image Quality Assessment With Auxiliary Learning Based on Depthwise and Anglewise Separable Convolutions

10 December 2024
Qiang Qu
Xiaoming Chen
Vera Chung
Zhibo Chen
ArXivPDFHTML
Abstract

In multimedia broadcasting, no-reference image quality assessment (NR-IQA) is used to indicate the user-perceived quality of experience (QoE) and to support intelligent data transmission while optimizing user experience. This paper proposes an improved no-reference light field image quality assessment (NR-LFIQA) metric for future immersive media broadcasting services. First, we extend the concept of depthwise separable convolution (DSC) to the spatial domain of light field image (LFI) and introduce "light field depthwise separable convolution (LF-DSC)", which can extract the LFI's spatial features efficiently. Second, we further theoretically extend the LF-DSC to the angular space of LFI and introduce the novel concept of "light field anglewise separable convolution (LF-ASC)", which is capable of extracting both the spatial and angular features for comprehensive quality assessment with low complexity. Third, we define the spatial and angular feature estimations as auxiliary tasks in aiding the primary NR-LFIQA task by providing spatial and angular quality features as hints. To the best of our knowledge, this work is the first exploration of deep auxiliary learning with spatial-angular hints on NR-LFIQA. Experiments were conducted in mainstream LFI datasets such as Win5-LID and SMART with comparisons to the mainstream full reference IQA metrics as well as the state-of-the-art NR-LFIQA methods. The experimental results show that the proposed metric yields overall 42.86% and 45.95% smaller prediction errors than the second-best benchmarking metric in Win5-LID and SMART, respectively. In some challenging cases with particular distortion types, the proposed metric can reduce the errors significantly by more than 60%.

View on arXiv
Comments on this paper