ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2412.08524
349
1

Learning to Decouple the Lights for 3D Face Texture Modeling

Neural Information Processing Systems (NeurIPS), 2024
11 December 2024
Tianxin Huang
Ying Tai
Ying Tai
Gim Hee Lee
    CVBM3DH
ArXiv (abs)PDFHTML
Main:8 Pages
21 Figures
Bibliography:5 Pages
12 Tables
Appendix:9 Pages
Abstract

Existing research has made impressive strides in reconstructing human facial shapes and textures from images with well-illuminated faces and minimal external occlusions. Nevertheless, it remains challenging to recover accurate facial textures from scenarios with complicated illumination affected by external occlusions, e.g. a face that is partially obscured by items such as a hat. Existing works based on the assumption of single and uniform illumination cannot correctly process these data. In this work, we introduce a novel approach to model 3D facial textures under such unnatural illumination. Instead of assuming single illumination, our framework learns to imitate the unnatural illumination as a composition of multiple separate light conditions combined with learned neural representations, named Light Decoupling. According to experiments on both single images and video sequences, we demonstrate the effectiveness of our approach in modeling facial textures under challenging illumination affected by occlusions. Please check https://tianxinhuang.github.io/projects/Deface for our videos and codes.

View on arXiv
Comments on this paper