DEFAME: Dynamic Evidence-based FAct-checking with Multimodal Experts

The proliferation of disinformation demands reliable and scalable fact-checking solutions. We present Dynamic Evidence-based FAct-checking with Multimodal Experts (DEFAME), a modular, zero-shot MLLM pipeline for open-domain, text-image claim verification. DEFAME operates in a six-stage process, dynamically selecting the tools and search depth to extract and evaluate textual and visual evidence. Unlike prior approaches that are text-only, lack explainability, or rely solely on parametric knowledge, DEFAME performs end-to-end verification, accounting for images in claims and evidence while generating structured, multimodal reports. Evaluation on the popular benchmarks VERITE, AVerITeC, and MOCHEG shows that DEFAME surpasses all previous methods, establishing itself as the new state-of-the-art fact-checking system for uni- and multimodal fact-checking. Moreover, we introduce a new benchmark, CLAIMREVIEW24+, featuring claims after the knowledge cutoff of GPT4o to avoid data leakage. Here, DEFAME drastically outperforms the GPT Chain-of-Thought baseline, demonstrating temporal generalizability and the potential for real-time fact-checking.
View on arXiv@article{braun2025_2412.10510, title={ DEFAME: Dynamic Evidence-based FAct-checking with Multimodal Experts }, author={ Tobias Braun and Mark Rothermel and Marcus Rohrbach and Anna Rohrbach }, journal={arXiv preprint arXiv:2412.10510}, year={ 2025 } }