ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2412.12151
82
3

SMARTCAL: An Approach to Self-Aware Tool-Use Evaluation and Calibration

11 December 2024
Yuanhao Shen
Xiaodan Zhu
L. Chen
ArXivPDFHTML
Abstract

The tool-use ability of Large Language Models (LLMs) has a profound impact on a wide range of industrial applications. However, LLMs' self-control and calibration capability in appropriately using tools remains understudied. The problem is consequential as it raises potential risks of degraded performance and poses a threat to the trustworthiness of the models. In this paper, we conduct a study on a family of state-of-the-art LLMs on three datasets with two mainstream tool-use frameworks. Our study reveals the tool-abuse behavior of LLMs, a tendency for models to misuse tools with overconfidence. We also find that this is a common issue regardless of model capability. Accordingly, we propose a novel approach, \textit{SMARTCAL}, to mitigate the observed issues, and our results show an average of 8.6 percent increase in the QA performance and a 21.6 percent decrease in Expected Calibration Error (ECE) compared to baseline models.

View on arXiv
Comments on this paper