Large language models (LLMs) have exhibited impressive multilingual reasoning capabilities, driven by extensive multilingual pre-training corpora and instruction fine-tuning data. However, a performance gap exists between high- and low-resource language reasoning tasks due to the language imbalance in the pre-training corpus, which is exacerbated by evaluation bias in existing reasoning benchmarks lacking low-resource language coverage. To alleviate this issue, we propose LinguaLIFT, a two-stage instruction tuning framework for advancing low-resource language reasoning. LinguaLIFT employs a language alignment layer to capture multilingual alignment in a code-switched tuning way without requiring multilingual instruction or parallel data, thereby transferring the cross-lingual reasoning capabilities to low-resource languages through English-only instruction tuning data. To comprehensively evaluate the multilingual reasoning capabilities, we introduce the Multilingual Math World Problem (MMWP) benchmark, which spans 21 low-resource, 17 medium-resource, and 10 high-resource languages. Experimental results show that LinguaLIFT outperforms several competitive baselines across MMWP and four widely used benchmarks.
View on arXiv@article{zhang2025_2412.12499, title={ LinguaLIFT: An Effective Two-stage Instruction Tuning Framework for Low-Resource Language Reasoning }, author={ Hongbin Zhang and Kehai Chen and Xuefeng Bai and Yang Xiang and Min Zhang }, journal={arXiv preprint arXiv:2412.12499}, year={ 2025 } }