ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2412.13534
72
0

Information-Theoretic Generative Clustering of Documents

18 December 2024
Xin Du
Kumiko Tanaka-Ishii
ArXivPDFHTML
Abstract

We present {\em generative clustering} (GC) for clustering a set of documents, X\mathrm{X}X, by using texts Y\mathrm{Y}Y generated by large language models (LLMs) instead of by clustering the original documents X\mathrm{X}X. Because LLMs provide probability distributions, the similarity between two documents can be rigorously defined in an information-theoretic manner by the KL divergence. We also propose a natural, novel clustering algorithm by using importance sampling. We show that GC achieves the state-of-the-art performance, outperforming any previous clustering method often by a large margin. Furthermore, we show an application to generative document retrieval in which documents are indexed via hierarchical clustering and our method improves the retrieval accuracy.

View on arXiv
Comments on this paper