ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2412.15716
72
0

Towards Secure AI-driven Industrial Metaverse with NFT Digital Twins

20 December 2024
Ravi Prakash
Tony Thomas
ArXivPDFHTML
Abstract

The rise of the industrial metaverse has brought digital twins (DTs) to the forefront. Blockchain-powered non-fungible tokens (NFTs) offer a decentralized approach to creating and owning these cloneable DTs. However, the potential for unauthorized duplication, or counterfeiting, poses a significant threat to the security of NFT-DTs. Existing NFT clone detection methods often rely on static information like metadata and images, which can be easily manipulated. To address these limitations, we propose a novel deep-learning-based solution as a combination of an autoencoder and RNN-based classifier. This solution enables real-time pattern recognition to detect fake NFT-DTs. Additionally, we introduce the concept of dynamic metadata, providing a more reliable way to verify authenticity through AI-integrated smart contracts. By effectively identifying counterfeit DTs, our system contributes to strengthening the security of NFT-based assets in the metaverse.

View on arXiv
Comments on this paper