ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2412.16034
88
0

Designing Visual Explanations and Learner Controls to Engage Adolescents in AI-Supported Exercise Selection

20 December 2024
Jeroen Ooge
Arno Vanneste
Maxwell Szymanski
K. Verbert
ArXivPDFHTML
Abstract

E-learning platforms that personalise content selection with AI are often criticised for lacking transparency and controllability. Researchers have therefore proposed solutions such as open learner models and letting learners select from ranked recommendations, which engage learners before or after the AI-supported selection process. However, little research has explored how learners - especially adolescents - could engage during such AI-supported decision-making. To address this open challenge, we iteratively designed and implemented a control mechanism that enables learners to steer the difficulty of AI-compiled exercise series before practice, while interactively analysing their control's impact in a 'what-if' visualisation. We evaluated our prototypes through four qualitative studies involving adolescents, teachers, EdTech professionals, and pedagogical experts, focusing on different types of visual explanations for recommendations. Our findings suggest that 'why' explanations do not always meet the explainability needs of young learners but can benefit teachers. Additionally, 'what-if' explanations were well-received for their potential to boost motivation. Overall, our work illustrates how combining learner control and visual explanations can be operationalised on e-learning platforms for adolescents. Future research can build upon our designs for 'why' and 'what-if' explanations and verify our preliminary findings.

View on arXiv
Comments on this paper