ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2026 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2412.16132
76
0

Data-Driven Mechanism Design: Jointly Eliciting Preferences and Information

ACM Conference on Economics and Computation (EC), 2024
24 December 2025
Dirk Bergemann
Marek Bojko
Paul Dütting
Renato Paes Leme
Haifeng Xu
Song Zuo
ArXiv (abs)PDFHTML
Abstract

We study mechanism design in environments where agents have private preferences and private information about a common payoff-relevant state. In such settings with multi-dimensional types, standard mechanisms fail to implement efficient allocations. We address this limitation by proposing data-driven mechanisms that condition transfers on additional post-allocation information, modeled as an estimator of the payoff-relevant state. Our mechanisms extend the classic Vickrey-Clarke-Groves framework. We show they achieve exact implementation in posterior equilibrium when the state is fully revealed or utilities are affine in an unbiased estimator. With a consistent estimator, they achieve approximate implementation that converges to exact implementation as the estimator converges, and we provide bounds on the convergence rate. We demonstrate applications to digital advertising auctions and AI shopping assistants, where user engagement naturally reveals relevant information, and to procurement auctions with consumer spot markets, where additional information arises from a pricing game played by the same agents.

View on arXiv
3 Figures
Appendix:61 Pages
Comments on this paper