31
0

Exploiting Label Skewness for Spiking Neural Networks in Federated Learning

Abstract

The energy efficiency of deep spiking neural networks (SNNs) aligns with the constraints of resource-limited edge devices, positioning SNNs as a promising foundation for intelligent applications leveraging the extensive data collected by these devices. To address data privacy concerns when deploying SNNs on edge devices, federated learning (FL) facilitates collaborative model training by leveraging data distributed across edge devices without transmitting local data to a central server. However, existing FL approaches struggle with label-skewed data across devices, which leads to drift in local SNN models and degrades the performance of the global SNN model. In this paper, we propose a novel framework called FedLEC, which incorporates intra-client label weight calibration to balance the learning intensity across local labels and inter-client knowledge distillation to mitigate local SNN model bias caused by label absence. Extensive experiments with three different structured SNNs across five datasets (i.e., three non-neuromorphic and two neuromorphic datasets) demonstrate the efficiency of FedLEC. Compared to eight state-of-the-art FL algorithms, FedLEC achieves an average accuracy improvement of approximately 11.59% for the global SNN model under various label skew distribution settings.

View on arXiv
Comments on this paper