ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2412.17316
37
11

Fast Gradient Computation for RoPE Attention in Almost Linear Time

3 January 2025
Yifang Chen
Jiayan Huo
Xiaoyu Li
Yingyu Liang
Zhenmei Shi
Zhao-quan Song
ArXivPDFHTML
Abstract

The Rotary Position Embedding (RoPE) mechanism has become a powerful enhancement to the Transformer architecture, which enables models to capture token relationships when encoding positional information. However, the RoPE mechanisms make the computations of attention mechanisms more complicated, which makes efficient algorithms challenging. Earlier research introduced almost linear time, i.e., n1+o(1)n^{1+o(1)}n1+o(1) where nnn is the number of input tokens, algorithms for the forward computation under specific parameter settings. However, achieving a subquadratic time algorithm for other parameter regimes remains impossible unless the widely accepted Strong Exponential Time Hypothesis (SETH) is disproven. In this work, we develop the first almost linear time algorithm for backward computations in the RoPE-based attention under bounded entries. Our approach builds on recent advancements in fast RoPE attention computations, utilizing a novel combination of the polynomial method and the Fast Fourier Transform. Furthermore, we show that with lower bounds derived from the SETH, the bounded entry condition is necessary for subquadratic performance.

View on arXiv
Comments on this paper