ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2412.17926
26
1

Contemporary implementations of spiking bio-inspired neural networks

23 December 2024
Andrey E. Schegolev
Marina V. Bastrakova
Michael A. Sergeev
Anastasia A. Maksimovskaya
Nikolay V. Klenov
Igor I. Soloviev
ArXivPDFHTML
Abstract

The extensive development of the field of spiking neural networks has led to many areas of research that have a direct impact on people's lives. As the most bio-similar of all neural networks, spiking neural networks not only allow the solution of recognition and clustering problems (including dynamics), but also contribute to the growing knowledge of the human nervous system. Our analysis has shown that the hardware implementation is of great importance, since the specifics of the physical processes in the network cells affect their ability to simulate the neural activity of living neural tissue, the efficiency of certain stages of information processing, storage and transmission. This survey reviews existing hardware neuromorphic implementations of bio-inspired spiking networks in the "semiconductor", "superconductor" and "optical" domains. Special attention is given to the possibility of effective "hybrids" of different approaches

View on arXiv
Comments on this paper