ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2412.20061
43
2

Comparative Analysis of Listwise Reranking with Large Language Models in Limited-Resource Language Contexts

28 December 2024
Yanxin Shen
Lun Wang
Chuanqi Shi
Shaoshuai Du
Yiyi Tao
Yixian Shen
Hang Zhang
    ALM
ArXivPDFHTML
Abstract

Large Language Models (LLMs) have demonstrated significant effectiveness across various NLP tasks, including text ranking. This study assesses the performance of large language models (LLMs) in listwise reranking for limited-resource African languages. We compare proprietary models RankGPT3.5, Rank4o-mini, RankGPTo1-mini and RankClaude-sonnet in cross-lingual contexts. Results indicate that these LLMs significantly outperform traditional baseline methods such as BM25-DT in most evaluation metrics, particularly in nDCG@10 and MRR@100. These findings highlight the potential of LLMs in enhancing reranking tasks for low-resource languages and offer insights into cost-effective solutions.

View on arXiv
Comments on this paper