ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2412.20718
36
1

M3^33oralBench: A MultiModal Moral Benchmark for LVLMs

31 December 2024
Bei Yan
Jie M. Zhang
Zhiyuan Chen
Shiguang Shan
Xilin Chen
    ELM
ArXivPDFHTML
Abstract

Recently, large foundation models, including large language models (LLMs) and large vision-language models (LVLMs), have become essential tools in critical fields such as law, finance, and healthcare. As these models increasingly integrate into our daily life, it is necessary to conduct moral evaluation to ensure that their outputs align with human values and remain within moral boundaries. Previous works primarily focus on LLMs, proposing moral datasets and benchmarks limited to text modality. However, given the rapid development of LVLMs, there is still a lack of multimodal moral evaluation methods. To bridge this gap, we introduce M3^33oralBench, the first MultiModal Moral Benchmark for LVLMs. M3^33oralBench expands the everyday moral scenarios in Moral Foundations Vignettes (MFVs) and employs the text-to-image diffusion model, SD3.0, to create corresponding scenario images. It conducts moral evaluation across six moral foundations of Moral Foundations Theory (MFT) and encompasses tasks in moral judgement, moral classification, and moral response, providing a comprehensive assessment of model performance in multimodal moral understanding and reasoning. Extensive experiments on 10 popular open-source and closed-source LVLMs demonstrate that M3^33oralBench is a challenging benchmark, exposing notable moral limitations in current models. Our benchmark is publicly available.

View on arXiv
Comments on this paper