Bidirectional transformers excel at sentiment analysis, and Large Language Models (LLM) are effective zero-shot learners. Might they perform better as a team? This paper explores collaborative approaches between ELECTRA and GPT-4o for three-way sentiment classification. We fine-tuned (FT) four models (ELECTRA Base/Large, GPT-4o/4o-mini) using a mix of reviews from Stanford Sentiment Treebank (SST) and DynaSent. We provided input from ELECTRA to GPT as: predicted label, probabilities, and retrieved examples. Sharing ELECTRA Base FT predictions with GPT-4o-mini significantly improved performance over either model alone (82.50 macro F1 vs. 79.14 ELECTRA Base FT, 79.41 GPT-4o-mini) and yielded the lowest cost/performance ratio (\0.12/F1 point). However, when GPT models were fine-tuned, including predictions decreased performance. GPT-4o FT-M was the top performer (86.99), with GPT-4o-mini FT close behind (86.70) at much less cost (\0.38 vs. \
View on arXiv@article{beno2025_2501.00062, title={ ELECTRA and GPT-4o: Cost-Effective Partners for Sentiment Analysis }, author={ James P. Beno }, journal={arXiv preprint arXiv:2501.00062}, year={ 2025 } }