Dynamic Optimization of Storage Systems Using Reinforcement Learning Techniques
The exponential growth of data-intensive applications has placed unprecedented demands on modern storage systems, necessitating dynamic and efficient optimization strategies. Traditional heuristics employed for storage performance optimization often fail to adapt to the variability and complexity of contemporary workloads, leading to significant performance bottlenecks and resource inefficiencies. To address these challenges, this paper introduces RL-Storage, a novel reinforcement learning (RL)-based framework designed to dynamically optimize storage system configurations. RL-Storage leverages deep Q-learning algorithms to continuously learn from real-time I/O patterns and predict optimal storage parameters, such as cache size, queue depths, and readahead settings[1].This work underscores the transformative potential of reinforcement learning techniques in addressing the dynamic nature of modern storage systems. By autonomously adapting to workload variations in real time, RL-Storage provides a robust and scalable solution for optimizing storage performance, paving the way for next-generation intelligent storage infrastructures.
View on arXiv