ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2501.00317
45
0

Spatio-Temporal Multi-Subgraph GCN for 3D Human Motion Prediction

3 January 2025
Jiexin Wang
Yiju Guo
Bing-Huang Su
    3DH
ArXivPDFHTML
Abstract

Human motion prediction (HMP) involves forecasting future human motion based on historical data. Graph Convolutional Networks (GCNs) have garnered widespread attention in this field for their proficiency in capturing relationships among joints in human motion. However, existing GCN-based methods tend to focus on either temporal-domain or spatial-domain features, or they combine spatio-temporal features without fully leveraging the complementarity and cross-dependency of these two features. In this paper, we propose the Spatial-Temporal Multi-Subgraph Graph Convolutional Network (STMS-GCN) to capture complex spatio-temporal dependencies in human motion. Specifically, we decouple the modeling of temporal and spatial dependencies, enabling cross-domain knowledge transfer at multiple scales through a spatio-temporal information consistency constraint mechanism. Besides, we utilize multiple subgraphs to extract richer motion information and enhance the learning associations of diverse subgraphs through a homogeneous information constraint mechanism. Extensive experiments on the standard HMP benchmarks demonstrate the superiority of our method.

View on arXiv
Comments on this paper