45
0

FED: Fast and Efficient Dataset Deduplication Framework with GPU Acceleration

Abstract

Dataset deduplication plays a crucial role in enhancing data quality, ultimately improving the training performance and efficiency of large language models. A commonly used method for data deduplication is the MinHash LSH algorithm. Recently, NVIDIA introduced a GPU-based MinHash LSH deduplication method, but it remains suboptimal, leaving room for further improvement in processing efficiency. This paper proposes a GPU-accelerated deduplication framework, FED, that optimizes MinHash LSH for GPU clusters and leverages computationally efficient, partially reusable non-cryptographic hash functions. FED significantly outperforms the CPU-based deduplication tool in SlimPajama (using 64 logical CPU cores) by up to 107.2 times and the GPU-based tool in NVIDIA NeMo Curator by up to 6.3 times when processing 30 million documents on a node with four GPUs. Notably, our method dramatically accelerates the previously time-consuming MinHash signature generation phase, achieving speed-ups of up to 260 compared to the CPU baseline. Despite these gains in efficiency, FED maintains high deduplication quality, with the duplicate document sets reaching a Jaccard similarity of over 0.96 compared to those identified by the standard MinHash algorithm. In large-scale experiments, the deduplication of 1.2 trillion tokens is completed in just 6 hours in a four-node, 16-GPU environment. The related code is publicly available on GitHub (\href{this https URL}{this https URL}).

View on arXiv
@article{son2025_2501.01046,
  title={ FED: Fast and Efficient Dataset Deduplication Framework with GPU Acceleration },
  author={ Youngjun Son and Chaewon Kim and Jaejin Lee },
  journal={arXiv preprint arXiv:2501.01046},
  year={ 2025 }
}
Comments on this paper