ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2501.01332
33
0

Decoding Knowledge in Large Language Models: A Framework for Categorization and Comprehension

3 January 2025
Yanbo Fang
Ruixiang Tang
    ELM
ArXivPDFHTML
Abstract

Understanding how large language models (LLMs) acquire, retain, and apply knowledge remains an open challenge. This paper introduces a novel framework, K-(CSA)^2, which categorizes LLM knowledge along two dimensions: correctness and confidence. The framework defines six categories of knowledge, ranging from highly confident correctness to confidently held misconceptions, enabling a nuanced evaluation of model comprehension beyond binary accuracy. Using this framework, we demonstrate how techniques like chain-of-thought prompting and reinforcement learning with human feedback fundamentally alter the knowledge structures of internal (pre-trained) and external (context-dependent) knowledge in LLMs. CoT particularly enhances base model performance and shows synergistic benefits when applied to aligned LLMs. Moreover, our layer-wise analysis reveals that higher layers in LLMs encode more high-confidence knowledge, while low-confidence knowledge tends to emerge in middle-to-lower layers.

View on arXiv
Comments on this paper