ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2501.02198
26
0

Fresh-CL: Feature Realignment through Experts on Hypersphere in Continual Learning

4 January 2025
Zhongyi Zhou
Yaxin Peng
Pin Yi
Minjie Zhu
Chaomin Shen
ArXivPDFHTML
Abstract

Continual Learning enables models to learn and adapt to new tasks while retaining prior knowledge. Introducing new tasks, however, can naturally lead to feature entanglement across tasks, limiting the model's capability to distinguish between new domain data. In this work, we propose a method called Feature Realignment through Experts on hyperSpHere in Continual Learning (Fresh-CL). By leveraging predefined and fixed simplex equiangular tight frame (ETF) classifiers on a hypersphere, our model improves feature separation both intra and inter tasks. However, the projection to a simplex ETF shifts with new tasks, disrupting structured feature representation of previous tasks and degrading performance. Therefore, we propose a dynamic extension of ETF through mixture of experts, enabling adaptive projections onto diverse subspaces to enhance feature representation. Experiments on 11 datasets demonstrate a 2% improvement in accuracy compared to the strongest baseline, particularly in fine-grained datasets, confirming the efficacy of combining ETF and MoE to improve feature distinction in continual learning scenarios.

View on arXiv
Comments on this paper