308

Quantum Cognition-Inspired EEG-based Recommendation via Graph Neural Networks

International Conference on Information and Knowledge Management (CIKM), 2024
Abstract

Current recommendation systems recommend goods by considering users' historical behaviors, social relations, ratings, and other multi-modals. Although outdated user information presents the trends of a user's interests, no recommendation system can know the users' real-time thoughts indeed. With the development of brain-computer interfaces, it is time to explore next-generation recommenders that show users' real-time thoughts without delay. Electroencephalography (EEG) is a promising method of collecting brain signals because of its convenience and mobility. Currently, there is only few research on EEG-based recommendations due to the complexity of learning human brain activity. To explore the utility of EEG-based recommendation, we propose a novel neural network model, QUARK, combining Quantum Cognition Theory and Graph Convolutional Networks for accurate item recommendations. Compared with the state-of-the-art recommendation models, the superiority of QUARK is confirmed via extensive experiments.

View on arXiv
Main:10 Pages
8 Figures
Bibliography:2 Pages
4 Tables
Appendix:1 Pages
Comments on this paper