ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2501.03187
39
0

Turn-based Multi-Agent Reinforcement Learning Model Checking

6 January 2025
Dennis Gross
ArXivPDFHTML
Abstract

In this paper, we propose a novel approach for verifying the compliance of turn-based multi-agent reinforcement learning (TMARL) agents with complex requirements in stochastic multiplayer games. Our method overcomes the limitations of existing verification approaches, which are inadequate for dealing with TMARL agents and not scalable to large games with multiple agents. Our approach relies on tight integration of TMARL and a verification technique referred to as model checking. We demonstrate the effectiveness and scalability of our technique through experiments in different types of environments. Our experiments show that our method is suited to verify TMARL agents and scales better than naive monolithic model checking.

View on arXiv
Comments on this paper