ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2501.04630
36
0

Evaluating Interval-based Tokenization for Pitch Representation in Symbolic Music Analysis

8 January 2025
Dinh-Viet-Toan Le
Louis Bigo
Mikaela Keller
ArXivPDFHTML
Abstract

Symbolic music analysis tasks are often performed by models originally developed for Natural Language Processing, such as Transformers. Such models require the input data to be represented as sequences, which is achieved through a process of tokenization. Tokenization strategies for symbolic music often rely on absolute MIDI values to represent pitch information. However, music research largely promotes the benefit of higher-level representations such as melodic contour and harmonic relations for which pitch intervals turn out to be more expressive than absolute pitches. In this work, we introduce a general framework for building interval-based tokenizations. By evaluating these tokenizations on three music analysis tasks, we show that such interval-based tokenizations improve model performances and facilitate their explainability.

View on arXiv
Comments on this paper