ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2501.06308
34
0

Uncertainty Estimation for Path Loss and Radio Metric Models

10 January 2025
Alexis Bose
Jonathan Ethier
Ryan Dempsey
Yifeng Qiu
ArXivPDFHTML
Abstract

This research leverages Conformal Prediction (CP) in the form of Conformal Predictive Systems (CPS) to accurately estimate uncertainty in a suite of machine learning (ML)-based radio metric models [1] as well as in a 2-D map-based ML path loss model [2]. Utilizing diverse difficulty estimators, we construct 95% confidence prediction intervals (PIs) that are statistically robust. Our experiments demonstrate that CPS models, trained on Toronto datasets, generalize effectively to other cities such as Vancouver and Montreal, maintaining high coverage and reliability. Furthermore, the employed difficulty estimators identify challenging samples, leading to measurable reductions in RMSE as dataset difficulty decreases. These findings highlight the effectiveness of scalable and reliable uncertainty estimation through CPS in wireless network modeling, offering important potential insights for network planning, operations, and spectrum management.

View on arXiv
Comments on this paper