ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2501.07960
49
0

SkipClick: Combining Quick Responses and Low-Level Features for Interactive Segmentation in Winter Sports Contexts

14 January 2025
Robin Schon
Julian Lorenz
Daniel Kienzle
Rainer Lienhart
ArXivPDFHTML
Abstract

In this paper, we present a novel architecture for interactive segmentation in winter sports contexts. The field of interactive segmentation deals with the prediction of high-quality segmentation masks by informing the network about the objects position with the help of user guidance. In our case the guidance consists of click prompts. For this task, we first present a baseline architecture which is specifically geared towards quickly responding after each click. Afterwards, we motivate and describe a number of architectural modifications which improve the performance when tasked with segmenting winter sports equipment on the WSESeg dataset. With regards to the average NoC@85 metric on the WSESeg classes, we outperform SAM and HQ-SAM by 2.336 and 7.946 clicks, respectively. When applied to the HQSeg-44k dataset, our system delivers state-of-the-art results with a NoC@90 of 6.00 and NoC@95 of 9.89. In addition to that, we test our model on a novel dataset containing masks for humans during skiing.

View on arXiv
Comments on this paper