ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2501.10256
31
0

Unsupervised Rhythm and Voice Conversion of Dysarthric to Healthy Speech for ASR

20 January 2025
Karl El Hajal
Enno Hermann
Ajinkya Kulkarni
Mathew Magimai.-Doss
ArXivPDFHTML
Abstract

Automatic speech recognition (ASR) systems are well known to perform poorly on dysarthric speech. Previous works have addressed this by speaking rate modification to reduce the mismatch with typical speech. Unfortunately, these approaches rely on transcribed speech data to estimate speaking rates and phoneme durations, which might not be available for unseen speakers. Therefore, we combine unsupervised rhythm and voice conversion methods based on self-supervised speech representations to map dysarthric to typical speech. We evaluate the outputs with a large ASR model pre-trained on healthy speech without further fine-tuning and find that the proposed rhythm conversion especially improves performance for speakers of the Torgo corpus with more severe cases of dysarthria. Code and audio samples are available atthis https URL.

View on arXiv
Comments on this paper