ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2501.10404
23
0

Automated Detection of Epileptic Spikes and Seizures Incorporating a Novel Spatial Clustering Prior

5 January 2025
Hanyang Dong
Shurong Sheng
Xiongfei Wang
Jiahong Gao
Yi Sun
Wanli Yang
Kuntao Xiao
Pengfei Teng
Guoming Luan
Zhao Lv
ArXivPDFHTML
Abstract

A Magnetoencephalography (MEG) time-series recording consists of multi-channel signals collected by superconducting sensors, with each signal's intensity reflecting magnetic field changes over time at the sensor location. Automating epileptic MEG spike detection significantly reduces manual assessment time and effort, yielding substantial clinical benefits. Existing research addresses MEG spike detection by encoding neural network inputs with signals from all channel within a time segment, followed by classification. However, these methods overlook simultaneous spiking occurred from nearby sensors. We introduce a simple yet effective paradigm that first clusters MEG channels based on their sensor's spatial position. Next, a novel convolutional input module is designed to integrate the spatial clustering and temporal changes of the signals. This module is fed into a custom MEEG-ResNet3D developed by the authors, which learns to extract relevant features and classify the input as a spike clip or not. Our method achieves an F1 score of 94.73% on a large real-world MEG dataset Sanbo-CMR collected from two centers, outperforming state-of-the-art approaches by 1.85%. Moreover, it demonstrates efficacy and stability in the Electroencephalographic (EEG) seizure detection task, yielding an improved weighted F1 score of 1.4% compared to current state-of-the-art techniques evaluated on TUSZ, whch is the largest EEG seizure dataset.

View on arXiv
Comments on this paper