34
0

VENENA: A Deceptive Visual Encryption Framework for Wireless Semantic Secrecy

Abstract

Eavesdropping has been a long-standing threat to the security and privacy of wireless communications, since it is difficult to detect and costly to prevent. As networks evolve towards Sixth Generation (6G) and semantic communication becomes increasingly central to next-generation wireless systems, securing semantic information transmission emerges as a critical challenge. While classical physical layer security (PLS) focuses on passive security, the recently proposed concept of physical layer deception (PLD) offers a semantic encryption measure to actively deceive eavesdroppers. Yet the existing studies of PLD have been dominantly information-theoretical and link-level oriented, lacking considerations of system-level design and practical implementation.In this work we propose a novel artificial intelligence (AI)-enabled framework called Visual ENcryption for Eavesdropping NegAtion (VENENA), which combines the techniques of PLD, visual encryption, and image poisoning, into a comprehensive mechanism for deceptive secure semantic transmission in future wireless networks. By leveraging advanced vision transformers and semantic codecs, VENENA demonstrates how semantic security can be enhanced through the synergy of physical layer techniques and artificial intelligence, paving the way for secure semantic communication in 6G networks.

View on arXiv
Comments on this paper