ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2501.12456
30
0

Deploying Privacy Guardrails for LLMs: A Comparative Analysis of Real-World Applications

21 January 2025
Shubhi Asthana
Bing Zhang
Ruchi Mahindru
Chad DeLuca
Anna Lisa Gentile
Sandeep Gopisetty
ArXivPDFHTML
Abstract

The adoption of Large Language Models (LLMs) has revolutionized AI applications but poses significant challenges in safeguarding user privacy. Ensuring compliance with privacy regulations such as GDPR and CCPA while addressing nuanced privacy risks requires robust and scalable frameworks. This paper presents a detailed study of OneShield Privacy Guard, a framework designed to mitigate privacy risks in user inputs and LLM outputs across enterprise and open-source settings. We analyze two real-world deployments:(1) a multilingual privacy-preserving system integrated with Data and Model Factory, focusing on enterprise-scale data governance; and (2) PR Insights, an open-source repository emphasizing automated triaging and community-driven refinements. In Deployment 1, OneShield achieved a 0.95 F1 score in detecting sensitive entities like dates, names, and phone numbers across 26 languages, outperforming state-of-the-art tool such as StarPII and Presidio by up to 12\%. Deployment 2, with an average F1 score of 0.86, reduced manual effort by over 300 hours in three months, accurately flagging 8.25\% of 1,256 pull requests for privacy risks with enhanced context sensitivity. These results demonstrate OneShield's adaptability and efficacy in diverse environments, offering actionable insights for context-aware entity recognition, automated compliance, and ethical AI adoption. This work advances privacy-preserving frameworks, supporting user trust and compliance across operational contexts.

View on arXiv
Comments on this paper