ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2501.12477
136
0

Slot-BERT: Self-supervised Object Discovery in Surgical Video

21 January 2025
Guiqiu Liao
M. Jogan
Marcel Hussing
Kenta Nakahashi
Kazuhiro Yasufuku
Amin Madani
Eric Eaton
Daniel A. Hashimoto
ArXivPDFHTML
Abstract

Object-centric slot attention is a powerful framework for unsupervised learning of structured and explainable representations that can support reasoning about objects and actions, including in surgical videos. While conventional object-centric methods for videos leverage recurrent processing to achieve efficiency, they often struggle with maintaining long-range temporal coherence required for long videos in surgical applications. On the other hand, fully parallel processing of entire videos enhances temporal consistency but introduces significant computational overhead, making it impractical for implementation on hardware in medical facilities. We present Slot-BERT, a bidirectional long-range model that learns object-centric representations in a latent space while ensuring robust temporal coherence. Slot-BERT scales object discovery seamlessly to long videos of unconstrained lengths. A novel slot contrastive loss further reduces redundancy and improves the representation disentanglement by enhancing slot orthogonality. We evaluate Slot-BERT on real-world surgical video datasets from abdominal, cholecystectomy, and thoracic procedures. Our method surpasses state-of-the-art object-centric approaches under unsupervised training achieving superior performance across diverse domains. We also demonstrate efficient zero-shot domain adaptation to data from diverse surgical specialties and databases.

View on arXiv
Comments on this paper