77
1

AnyNav: Visual Neuro-Symbolic Friction Learning for Off-road Navigation

Abstract

Off-road navigation is essential for a wide range of applications in field robotics such as planetary exploration and disaster response. However, it remains an unresolved challenge due to the unstructured environments and inherent complexity of terrain-vehicle interactions. Traditional physics-based methods struggle to accurately model the nonlinear dynamics of these interactions, while data-driven approaches often suffer from overfitting to specific motion patterns, vehicle sizes, and types, limiting their generalizability. To overcome these challenges, we introduce a vision-based friction estimation framework grounded in neuro-symbolic principles, integrating neural networks for visual perception with symbolic reasoning for physical modeling. This enables significantly improved generalization abilities through explicit physical reasoning incorporating the predicted friction. Additionally, we develop a physics-informed planner that leverages the learned friction coefficient to generate physically feasible and efficient paths, along with corresponding speed profiles. We refer to our approach as AnyNav and evaluate it in both simulation and real-world experiments, demonstrating its utility and robustness across various off-road scenarios and multiple types of four-wheeled vehicles. These results mark an important step toward developing neuro-symbolic spatial intelligence to reason about complex, unstructured environments and enable autonomous off-road navigation in challenging scenarios. Video demonstrations are available atthis https URL, where the source code will also be released.

View on arXiv
Comments on this paper