Traditional Incremental Learning (IL) targets to handle sequential fully-supervised learning problems where novel classes emerge from time to time. However, due to inherent annotation uncertainty and ambiguity, collecting high-quality annotated data in a dynamic learning system can be extremely expensive. To mitigate this problem, we propose a novel weakly-supervised learning paradigm called Incremental Partial Label Learning (IPLL), where the sequentially arrived data relate to a set of candidate labels rather than the ground truth. Technically, we develop the Prototype-Guided Disambiguation and Replay Algorithm (PGDR) which leverages the class prototypes as a proxy to mitigate two intertwined challenges in IPLL, i.e., label ambiguity and catastrophic forgetting. To handle the former, PGDR encapsulates a momentum-based pseudo-labeling algorithm along with prototype-guided initialization, resulting in a balanced perception of classes. To alleviate forgetting, we develop a memory replay technique that collects well-disambiguated samples while maintaining representativeness and diversity. By jointly distilling knowledge from curated memory data, our framework exhibits a great disambiguation ability for samples of new tasks and achieves less forgetting of knowledge. Extensive experiments demonstrate that PGDR achieves superior
View on arXiv@article{wang2025_2501.13584, title={ Towards Robust Incremental Learning under Ambiguous Supervision }, author={ Rui Wang and Mingxuan Xia and Chang Yao and Lei Feng and Junbo Zhao and Gang Chen and Haobo Wang }, journal={arXiv preprint arXiv:2501.13584}, year={ 2025 } }