ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2501.13984
28
0

Comprehensive Modeling and Question Answering of Cancer Clinical Practice Guidelines using LLMs

23 January 2025
Bhumika Gupta
Pralaypati Ta
Keerthi Ram
M. Sivaprakasam
    AI4MH
ArXivPDFHTML
Abstract

The updated recommendations on diagnostic procedures and treatment pathways for a medical condition are documented as graphical flows in Clinical Practice Guidelines (CPGs). For effective use of the CPGs in helping medical professionals in the treatment decision process, it is necessary to fully capture the guideline knowledge, particularly the contexts and their relationships in the graph. While several existing works have utilized these guidelines to create rule bases for Clinical Decision Support Systems, limited work has been done toward directly capturing the full medical knowledge contained in CPGs. This work proposes an approach to create a contextually enriched, faithful digital representation of National Comprehensive Cancer Network (NCCN) Cancer CPGs in the form of graphs using automated extraction and node & relationship classification. We also implement semantic enrichment of the model by using Large Language Models (LLMs) for node classification, achieving an accuracy of 80.86% and 88.47% with zero-shot learning and few-shot learning, respectively. Additionally, we introduce a methodology for answering natural language questions with constraints to guideline text by leveraging LLMs to extract the relevant subgraph from the guideline knowledge base. By generating natural language answers based on subgraph paths and semantic information, we mitigate the risk of incorrect answers and hallucination associated with LLMs, ensuring factual accuracy in medical domain Question Answering.

View on arXiv
Comments on this paper