ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2501.15007
31
0

Controllable Protein Sequence Generation with LLM Preference Optimization

28 January 2025
Xiangyu Liu
Yi Liu
Silei Chen
Wei Hu
ArXivPDFHTML
Abstract

Designing proteins with specific attributes offers an important solution to address biomedical challenges. Pre-trained protein large language models (LLMs) have shown promising results on protein sequence generation. However, to control sequence generation for specific attributes, existing work still exhibits poor functionality and structural stability. In this paper, we propose a novel controllable protein design method called CtrlProt. We finetune a protein LLM with a new multi-listwise preference optimization strategy to improve generation quality and support multi-attribute controllable generation. Experiments demonstrate that CtrlProt can meet functionality and structural stability requirements effectively, achieving state-of-the-art performance in both single-attribute and multi-attribute protein sequence generation.

View on arXiv
Comments on this paper