ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2501.15266
55
0

Enhanced Intrusion Detection in IIoT Networks: A Lightweight Approach with Autoencoder-Based Feature Learning

28 January 2025
Tasnimul Hasan
Abrar Hossain
Mufakir Qamar Ansari
Talha Hussain Syed
ArXiv (abs)PDFHTML
Abstract

The rapid expansion of the Industrial Internet of Things (IIoT) has significantly advanced digital technologies and interconnected industrial systems, creating substantial opportunities for growth. However, this growth has also heightened the risk of cyberattacks, necessitating robust security measures to protect IIoT networks. Intrusion Detection Systems (IDS) are essential for identifying and preventing abnormal network behaviors and malicious activities. Despite the potential of Machine Learning (ML)--based IDS solutions, existing models often face challenges with class imbalance and multiclass IIoT datasets, resulting in reduced detection accuracy. This research directly addresses these challenges by implementing six innovative approaches to enhance IDS performance, including leveraging an autoencoder for dimensional reduction, which improves feature learning and overall detection accuracy. Our proposed Decision Tree model achieved an exceptional F1 score and accuracy of 99.94% on the Edge-IIoTset dataset. Furthermore, we prioritized lightweight model design, ensuring deployability on resource-constrained edge devices. Notably, we are the first to deploy our model on a Jetson Nano, achieving inference times of 0.185 ms for binary classification and 0.187 ms for multiclass classification. These results highlight the novelty and robustness of our approach, offering a practical and efficient solution to the challenges posed by imbalanced and multiclass IIoT datasets, thereby enhancing the detection and prevention of network intrusions.

View on arXiv
Comments on this paper