ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2501.15860
29
0

The Components of Collaborative Joint Perception and Prediction -- A Conceptual Framework

28 January 2025
Lei Wan
Hannan Ejaz Keen
Alexey Vinel
ArXivPDFHTML
Abstract

Connected Autonomous Vehicles (CAVs) benefit from Vehicle-to-Everything (V2X) communication, which enables the exchange of sensor data to achieve Collaborative Perception (CP). To reduce cumulative errors in perception modules and mitigate the visual occlusion, this paper introduces a new task, Collaborative Joint Perception and Prediction (Co-P&P), and provides a conceptual framework for its implementation to improve motion prediction of surrounding objects, thereby enhancing vehicle awareness in complex traffic scenarios. The framework consists of two decoupled core modules, Collaborative Scene Completion (CSC) and Joint Perception and Prediction (P&P) module, which simplify practical deployment and enhance scalability. Additionally, we outline the challenges in Co-P&P and discuss future directions for this research area.

View on arXiv
Comments on this paper