ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2501.17049
58
1

Hellinger-Kantorovich Gradient Flows: Global Exponential Decay of Entropy Functionals

28 January 2025
Alexander Mielke
Jia Jie Zhu
ArXivPDFHTML
Abstract

We investigate a family of gradient flows of positive and probability measures, focusing on the Hellinger-Kantorovich (HK) geometry, which unifies transport mechanism of Otto-Wasserstein, and the birth-death mechanism of Hellinger (or Fisher-Rao). A central contribution is a complete characterization of global exponential decay behaviors of entropy functionals (e.g. KL, χ2\chi^2χ2) under Otto-Wasserstein and Hellinger-type gradient flows. In particular, for the more challenging analysis of HK gradient flows on positive measures -- where the typical log-Sobolev arguments fail -- we develop a specialized shape-mass decomposition that enables new analysis results. Our approach also leverages the (Polyak-)Łojasiewicz-type functional inequalities and a careful extension of classical dissipation estimates. These findings provide a unified and complete theoretical framework for gradient flows and underpin applications in computational algorithms for statistical inference, optimization, and machine learning.

View on arXiv
Comments on this paper