ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2501.17115
74
0

Evidence on the Regularisation Properties of Maximum-Entropy Reinforcement Learning

28 January 2025
Rémy Hosseinkhan Boucher
Onofrio Semeraro
L. Mathelin
ArXivPDFHTML
Abstract

The generalisation and robustness properties of policies learnt through Maximum-Entropy Reinforcement Learning are investigated on chaotic dynamical systems with Gaussian noise on the observable. First, the robustness under noise contamination of the agent's observation of entropy regularised policies is observed. Second, notions of statistical learning theory, such as complexity measures on the learnt model, are borrowed to explain and predict the phenomenon. Results show the existence of a relationship between entropy-regularised policy optimisation and robustness to noise, which can be described by the chosen complexity measures.

View on arXiv
Comments on this paper