ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2501.17411
43
0

A Genetic Algorithm-Based Approach for Automated Optimization of Kolmogorov-Arnold Networks in Classification Tasks

29 January 2025
Quan Long
Bin Wang
Bing Xue
Mengjie Zhang
ArXivPDFHTML
Abstract

To address the issue of interpretability in multilayer perceptrons (MLPs), Kolmogorov-Arnold Networks (KANs) are introduced in 2024. However, optimizing KAN structures is labor-intensive, typically requiring manual intervention and parameter tuning. This paper proposes GA-KAN, a genetic algorithm-based approach that automates the optimization of KANs, requiring no human intervention in the design process. To the best of our knowledge, this is the first time that evolutionary computation is explored to optimize KANs automatically. Furthermore, inspired by the use of sparse connectivity in MLPs in effectively reducing the number of parameters, GA-KAN further explores sparse connectivity to tackle the challenge of extensive parameter spaces in KANs. GA-KAN is validated on two toy datasets, achieving optimal results without the manual tuning required by the original KAN. Additionally, GA-KAN demonstrates superior performance across five classification datasets, outperforming traditional methods on all datasets and providing interpretable symbolic formulae for the Wine and Iris datasets, thereby enhancing model transparency. Furthermore, GA-KAN significantly reduces the number of parameters over the standard KAN across all the five datasets. The core contributions of GA-KAN include automated optimization, a new encoding strategy, and a new decoding process, which together improve the accuracy and interpretability, and reduce the number of parameters.

View on arXiv
Comments on this paper