ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2501.19335
95
0

What is causal about causal models and representations?

31 January 2025
Frederik Hytting Jørgensen
Luigi Gresele
S. Weichwald
    CML
ArXivPDFHTML
Abstract

Causal Bayesian networks are 'causal' models since they make predictions about interventional distributions. To connect such causal model predictions to real-world outcomes, we must determine which actions in the world correspond to which interventions in the model. For example, to interpret an action as an intervention on a treatment variable, the action will presumably have to a) change the distribution of treatment in a way that corresponds to the intervention, and b) not change other aspects, such as how the outcome depends on the treatment; while the marginal distributions of some variables may change as an effect. We introduce a formal framework to make such requirements for different interpretations of actions as interventions precise. We prove that the seemingly natural interpretation of actions as interventions is circular: Under this interpretation, every causal Bayesian network that correctly models the observational distribution is trivially also interventionally valid, and no action yields empirical data that could possibly falsify such a model. We prove an impossibility result: No interpretation exists that is non-circular and simultaneously satisfies a set of natural desiderata. Instead, we examine non-circular interpretations that may violate some desiderata and show how this may in turn enable the falsification of causal models. By rigorously examining how a causal Bayesian network could be a 'causal' model of the world instead of merely a mathematical object, our formal framework contributes to the conceptual foundations of causal representation learning, causal discovery, and causal abstraction, while also highlighting some limitations of existing approaches.

View on arXiv
@article{jørgensen2025_2501.19335,
  title={ What is causal about causal models and representations? },
  author={ Frederik Hytting Jørgensen and Luigi Gresele and Sebastian Weichwald },
  journal={arXiv preprint arXiv:2501.19335},
  year={ 2025 }
}
Comments on this paper