Smishing is a social engineering attack using SMS containing malicious content to deceive individuals into disclosing sensitive information or transferring money to cybercriminals. Smishing attacks have surged by 328%, posing a major threat to mobile users, with losses exceeding \54.2millionin2019.Despiteitsgrowingprevalence,theissueremainssignificantlyunder−addressed.ThispaperpresentsanovelhybridmachinelearningmodelfordetectingBanglasmishingtexts,combiningBidirectionalEncoderRepresentationsfromTransformers(BERT)withConvolutionalNeuralNetworks(CNNs)forenhancedcharacter−levelanalysis.Ourmodeladdressesmulti−classclassificationbydistinguishingbetweenNormal,Promotional,andSmishingSMS.Unliketraditionalbinaryclassificationmethods,ourapproachintegratesBERT′scontextualembeddingswithCNN′scharacter−levelfeatures,improvingdetectionaccuracy.Enhancedbyanattentionmechanism,themodeleffectivelyprioritizescrucialtextsegments.Ourmodelachieves98.47
@article{tanbhir2025_2502.01518,
title={ Hybrid Machine Learning Model for Detecting Bangla Smishing Text Using BERT and Character-Level CNN },
author={ Gazi Tanbhir and Md. Farhan Shahriyar and Khandker Shahed and Abdullah Md Raihan Chy and Md Al Adnan },
journal={arXiv preprint arXiv:2502.01518},
year={ 2025 }
}