ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2502.01835
54
0

Efficient Denial of Service Attack Detection in IoT using Kolmogorov-Arnold Networks

3 February 2025
Oleksandr Kuznetsov
ArXivPDFHTML
Abstract

The proliferation of Internet of Things (IoT) devices has created a pressing need for efficient security solutions, particularly against Denial of Service (DoS) attacks. While existing detection approaches demonstrate high accuracy, they often require substantial computational resources, making them impractical for IoT deployment. This paper introduces a novel lightweight approach to DoS attack detection based on Kolmogorov-Arnold Networks (KANs). By leveraging spline-based transformations instead of traditional weight matrices, our solution achieves state-of-the-art detection performance while maintaining minimal resource requirements. Experimental evaluation on the CICIDS2017 dataset demonstrates 99.0% detection accuracy with only 0.19 MB memory footprint and 2.00 ms inference time per sample. Compared to existing solutions, KAN reduces memory requirements by up to 98% while maintaining competitive detection rates. The model's linear computational complexity ensures efficient scaling with input size, making it particularly suitable for large-scale IoT deployments. We provide comprehensive performance comparisons with recent approaches and demonstrate effectiveness across various DoS attack patterns. Our solution addresses the critical challenge of implementing sophisticated attack detection on resource-constrained devices, offering a practical approach to enhancing IoT security without compromising computational efficiency.

View on arXiv
@article{kuznetsov2025_2502.01835,
  title={ Efficient Denial of Service Attack Detection in IoT using Kolmogorov-Arnold Networks },
  author={ Oleksandr Kuznetsov },
  journal={arXiv preprint arXiv:2502.01835},
  year={ 2025 }
}
Comments on this paper