1.1K
v1v2 (latest)

Can LLMs Maintain Fundamental Abilities under KV Cache Compression?

Main:9 Pages
9 Figures
Bibliography:6 Pages
13 Tables
Appendix:10 Pages
Abstract

This paper investigates an underexplored challenge in large language models (LLMs): the impact of KV cache compression methods on LLMs' fundamental capabilities. Although existing methods achieve impressive compression ratios on long-context benchmarks, their effects on core model capabilities remain understudied. We present a comprehensive benchmark KVFundaBench to systematically evaluate the effects of KV cache compression across diverse fundamental LLM capabilities, spanning world knowledge, commonsense reasoning, arithmetic reasoning, code generation, safety, and long-context understanding andthis http URLanalysis reveals serval key findings: (1) \textit{Task-Dependent Degradation}; (2) \textit{Model-Type Robustness} (3) \textit{Prompt Length Vulnerability}; (4) \textit{Chunk-Level Superiority}; (5) \textit{Prompt-Gain Sensitivity}; (6) \textit{Long-Context Generation Sensitivity}. Based on our analysis of attention patterns and cross-task compression performance, we propose ShotKV, a novel compression approach that distinctly handles prefill and decoding phases while maintaining shot-level semantic coherence. Empirical results show that ShotKV achieves 9%9\%-18%18\% performance improvements on long-context generation tasks under aggressive compression ratios.

View on arXiv
Comments on this paper