ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2502.02625
32
0

Bayesian Parameter Shift Rule in Variational Quantum Eigensolvers

4 February 2025
Samuele Pedrielli
Christopher J. Anders
L. Funcke
K. Jansen
K. Nicoli
Shinichi Nakajima
ArXivPDFHTML
Abstract

Parameter shift rules (PSRs) are key techniques for efficient gradient estimation in variational quantum eigensolvers (VQEs). In this paper, we propose its Bayesian variant, where Gaussian processes with appropriate kernels are used to estimate the gradient of the VQE objective. Our Bayesian PSR offers flexible gradient estimation from observations at arbitrary locations with uncertainty information and reduces to the generalized PSR in special cases. In stochastic gradient descent (SGD), the flexibility of Bayesian PSR allows the reuse of observations in previous steps, which accelerates the optimization process. Furthermore, the accessibility to the posterior uncertainty, along with our proposed notion of gradient confident region (GradCoRe), enables us to minimize the observation costs in each SGD step. Our numerical experiments show that the VQE optimization with Bayesian PSR and GradCoRe significantly accelerates SGD and outperforms the state-of-the-art methods, including sequential minimal optimization.

View on arXiv
@article{pedrielli2025_2502.02625,
  title={ Bayesian Parameter Shift Rule in Variational Quantum Eigensolvers },
  author={ Samuele Pedrielli and Christopher J. Anders and Lena Funcke and Karl Jansen and Kim A. Nicoli and Shinichi Nakajima },
  journal={arXiv preprint arXiv:2502.02625},
  year={ 2025 }
}
Comments on this paper