ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2502.05396
42
0

A Novel Convolutional-Free Method for 3D Medical Imaging Segmentation

8 February 2025
Canxuan Gang
    MedIm
    ViT
ArXivPDFHTML
Abstract

Segmentation of 3D medical images is a critical task for accurate diagnosis and treatment planning. Convolutional neural networks (CNNs) have dominated the field, achieving significant success in 3D medical image segmentation. However, CNNs struggle with capturing long-range dependencies and global context, limiting their performance, particularly for fine and complex structures. Recent transformer-based models, such as TransUNet and nnFormer, have demonstrated promise in addressing these limitations, though they still rely on hybrid CNN-transformer architectures. This paper introduces a novel, fully convolutional-free model based on transformer architecture and self-attention mechanisms for 3D medical image segmentation. Our approach focuses on improving multi-semantic segmentation accuracy and addressing domain adaptation challenges between thick and thin slice CT images. We propose a joint loss function that facilitates effective segmentation of thin slices based on thick slice annotations, overcoming limitations in dataset availability. Furthermore, we present a benchmark dataset for multi-semantic segmentation on thin slices, addressing a gap in current medical imaging research. Our experiments demonstrate the superiority of the proposed model over traditional and hybrid architectures, offering new insights into the future of convolution-free medical image segmentation.

View on arXiv
@article{gang2025_2502.05396,
  title={ A Novel Convolutional-Free Method for 3D Medical Imaging Segmentation },
  author={ Canxuan Gang },
  journal={arXiv preprint arXiv:2502.05396},
  year={ 2025 }
}
Comments on this paper